Identification of potential interleukin-8 inhibitors acting on the interactive site between chemokine and CXCR2 receptor: A computational approach.
Thi-Thuy-Nga TranQue-Huong TranQuoc-Thai NguyenMinh-Tri LeDieu-Thuong Thi TrinhKhac-Minh ThaiPublished in: PloS one (2022)
Interactions between interleukin (IL)-8 and its receptors, CXCR1, and CXCR2, serve crucial roles in inflammatory conditions and various types of cancers. Inhibition of this signaling pathway has been exploited as a promising strategy in treating these diseases. However, most studies only focused on the design of allosteric antagonists-bound receptors on the intracellular side of IL-8 receptors. Recently, the first cryo-EM structures of IL-8-CXCR2-Gi complexes have been solved, revealing the unique binding and activation modes of the endogenous chemokine IL-8. Hence, we set to identify small molecule inhibitors for IL-8 using critical protein-protein interaction between IL-8 and CXCR2 at the orthosteric binding site. The pharmacophore models and molecular docking screened compounds from DrugBank and NCI databases. The oral bioavailability of the top 23 ligands from the screening was then predicted by the SwissAMDE tool. Molecular dynamics simulation and free binding energy calculation were performed for the best compounds. The result indicated that DB14770, DB12121, and DB03916 could form strong interactions and stable protein-ligand complexes with IL-8. These three candidates are potential IL-8 inhibitors that can be further evaluated by in vitro experiments in the next stage.