Detection of Peanut Adulteration in Food Samples by Nuclear Magnetic Resonance Spectroscopy.
Caroline SchmittTim BastekAlina StelzerTobias SchneiderMarkus FischerThomas HacklPublished in: Journal of agricultural and food chemistry (2020)
The addition of cheap and also readily available raw materials, such as peanut powder, to visually and chemically similar matrices is a common problem in the food industry. When peanuts are used as an adulterant, there is an additional risk of potential health hazard to consumers as a result of allergy-induced anaphylaxis. In this study, different series of peanut admixtures to visually similar food products, such as powdered hazelnuts, almonds, and walnuts, were prepared and analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy. For identification, an isolated signal at 3.05 ppm in the 1H NMR spectrum of polar peanut extract was used as an indicator of peanut adulteration. The chemical marker was identified as (2S,4R)-N-methyl-4-hydroxy-l-proline by resynthesis of the compound and used as an internal standard. The signal-to-noise ratio and the integral of the signal of the marker can both be used to detect peanut impurities. Overall, an approximate limit of detection of 4% admixtures of peanut in various food products was determined using a 400 MHz spectrometer. With regard to food fraud, we present a viable screening method for detection of economic-relevant peanut adulteration.
Keyphrases