Enhanced photocatalytic performance of a Ti-based metal-organic framework for hydrogen production: Hybridization with ZnCr-LDH nanosheets.
Muhammad SohailHyunuk KimTae Woo KimPublished in: Scientific reports (2019)
Novel hybrid composites of NH2-MIL-125(Ti) and ZnCr-layered double hydroxide nanosheets (ZnCr-LDH NSs) are developed for use as visible-light-active photocatalysts for hydrogen production based on water photolysis. The hybrid composites are obtained by growing NH2-MIL-125(Ti) in the presence of exfoliated ZnCr-LDH NSs using a solvothermal reaction. Hybridization of NH2-MIL-125(Ti) with exfoliated ZnCr-LDH NSs leads to significant effects on the morphology and optical properties of NH2-MIL-125(Ti). To find the optimum photocatalytic activity for hydrogen production by the hybrid composite photocatalysts, the content of ZnCr-LDH in this work is controlled. Compared to that of pristine NH2-MIL-125(Ti) and ZnCr-LDH, the hybrid composites exhibit an improved photocatalytic activity for hydrogen production under visible-light irradiation. In addition, the hybrid composite photocatalyst shows excellent photo-chemical stability. The improved photocatalytic activity is believed to benefit from the synergy of strong electronic coupling between NH2-MIL-125(Ti) and ZnCr-LDH NSs, expanded light absorption and band alignment to enhance the lifetime of photo-induced electrons and holes.