Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading.
You Na KimJin Hyoung ParkHungwon TchahPublished in: Journal of ophthalmology (2016)
Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R (2) = 0.187, p < 0.01) and nuclear density (R (2) = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R (2) = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.