Login / Signup

Optical Trapping-Polarized Raman Microspectroscopy of Single Ethanol Aerosol Microdroplets: Droplet Size Effects on Rotational Relaxation Time and Viscosity.

Ryosuke NakajimaAtsushi MiuraSayaka AbeNoboru Kitamura
Published in: Analytical chemistry (2021)
Optical trapping-polarized Raman microspectroscopy of single ethanol (EtOH) microdroplets with a diameter (d) of 6.1-16.5 μm levitated in an EtOH vapor-saturated air/N2 gas atmosphere has been explored to elucidate the vibrational and rotational motions of EtOH in the droplets at 22.0 °C. The Raman spectral bandwidth of the C-C stretching vibrational mode observed for an aerosol EtOH microdroplet was narrower than that of bulk EtOH, suggesting that the vibrational/rotational motions of EtOH in the aerosol system were restricted compared to those in the bulk system. In practice, polarized Raman microspectroscopy demonstrated that the rotational relaxation time (τrot) of EtOH in an aerosol microdroplet with d = 16. 5 μm was slower (2.33 ps) than that in a bulk EtOH (1.65 ps), while the vibrational relaxation times (τvib) in the aerosol and bulk EtOH systems were almost comparable with one another: 0.86-0.98 ps. Furthermore, although the τvib value of an aerosol EtOH microdroplet was almost unchanged irrespective of d as described above, the τrot value increased from 2.33 to 3.57 ps with a decrease in d from 16.5 to 6.1 μm, which corresponded to the increase in EtOH viscosity (η) from 1.33 to 2.04 cP with the decrease in d. The droplet size dependences of τrot and η in an aerosol EtOH microdroplet were discussed in terms of the gas/droplet interfacial molecular arrangements of EtOH and Laplace pressure experienced by a spherical EtOH microdroplet in the gas phase.
Keyphrases