Geometric, electronic, and optical properties of MoS2/WSSe van der Waals heterojunctions: a first-principles study.
Yan-Fang ZhangJin-Bo PanShi-Xuan DuPublished in: Nanotechnology (2021)
Van der Waals (vdW) heterojunctions constructed by vertical stacking two-dimensional transition metal dichalcogenides hold exciting promise in realizing future atomically thin electronic and optoelectronic devices. Recently, a Janus WSSe structure has been successfully synthesized by using chemical vapor deposition, selective epitaxy atomic replacement, and pulsed laser deposition methods. Herein, based on first-principles calculations, we introduce the structures and performances of MoS2/WSSe vdW heterojunctions with different interfaces and stacking modes. The vdW heterojunctions possess indirect band gaps for S-S interfaces, while direct band gaps for Se-S interfaces. Besides, the potential drop indicates an efficient separation of photogenerated charges. Interestingly, the opposite built-in electric fields formed in the vdW heterojunctions with a S-S interface and a Se-S interface suggest different charge transfer paths, which would motivate further theoretical and experimental investigations on charge transfer dynamics. Moreover, the electronic property is adjustable by applying external in-plane strains, accomplishing with indirect to direct bandgap transition and semiconductor to metal transition. The findings are helpful for the design of multi-functional high-performance electronic and optoelectronic devices based on the MoS2/WSSe vdW heterojunctions.