Login / Signup

Diversity of indoor activities and economic development of neighborhoods.

Daniele QuerciaLuca Maria AielloRossano Schifanella
Published in: PloS one (2018)
Over the last few decades, public life has taken center stage in urban studies, but that is about to change. At times, indoor activities have been shown to matter more than what is publicly visible (they have been found to be more predictive of future crimes, for example). Until recently, however, data has not been available to study indoor activities at city scale. To that end, we propose a new methodology that relies on tagging information of geo-referenced pictures and unfolds in three main steps. First, we collected and classified a comprehensive set of activity-related words, creating the first dictionary of urban activities. Second, for both London and New York City, we collected geo-referenced Flickr tags and matched them with the words in the dictionary. This step produced both a systematic classification (our activity-related words were best classified in eleven categories) and two city-wide indoor activity maps which, when compared to open data of public amenities and sensory maps of smell and sound matched theoretical expectations. Third, we studied, for the first time, activities happening indoor in relation to neighborhood socio-economic conditions. We found the very same result for both London and New York City. In deprived areas, people focused on any of the activity types (leading to specialization), and it did not matter on which one they did so. By contrast, in well-to-do areas, people engaged not in one type of activity but in a variety of them (leading to diversification).
Keyphrases
  • air pollution
  • particulate matter
  • machine learning
  • physical activity
  • magnetic resonance imaging
  • big data
  • risk assessment
  • social media
  • contrast enhanced
  • current status
  • solid state