Login / Signup

Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal.

Muhammad SaleemIngo FetzerHauke HarmsAntonis Chatzinotas
Published in: Proceedings. Biological sciences (2016)
Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN.
Keyphrases
  • organic matter
  • microbial community
  • climate change
  • genetic diversity
  • mass spectrometry
  • single molecule
  • amino acid