Echo state network models for nonlinear Granger causality.
Andrea DuggentoMaria GuerrisiNicola ToschiPublished in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (2021)
While Granger causality (GC) has been often employed in network neuroscience, most GC applications are based on linear multivariate autoregressive (MVAR) models. However, real-life systems like biological networks exhibit notable nonlinear behaviour, hence undermining the validity of MVAR-based GC (MVAR-GC). Most nonlinear GC estimators only cater for additive nonlinearities or, alternatively, are based on recurrent neural networks or long short-term memory networks, which present considerable training difficulties and tailoring needs. We reformulate the GC framework in terms of echo-state networks-based models for arbitrarily complex networks, and characterize its ability to capture nonlinear causal relations in a network of noisy Duffing oscillators, showing a net advantage of echo state GC (ES-GC) in detecting nonlinear, causal links. We then explore the structure of ES-GC networks in the human brain employing functional MRI data from 1003 healthy subjects drawn from the human connectome project, demonstrating the existence of previously unknown directed within-brain interactions. In addition, we examine joint brain-heart signals in 15 subjects where we explore directed interaction between brain networks and central vagal cardiac control in order to investigate the so-called central autonomic network in a causal manner. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.