Login / Signup

Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine.

Krittika MittalJessica EwaldNiladri Basu
Published in: Environmental toxicology and chemistry (2022)
Ethical and resource limitation concerns are pushing chemicals management to develop alternatives to animal testing strategies. The objective of our study was to determine whether transcriptomic point of departure (tPOD) values could be derived from studies that followed Organisation for Economic Co-operation and Development (OECD) Test No. 249 (rainbow trout gill cell line), as well as from studies on trout liver and gut cells. Gill, liver, and gut cell lines were exposed to methylmercury and fluoxetine. Concentrations causing 50% cytotoxicity (LC50) were derived, the whole transcriptome was sequenced, and gene tPOD and pathway benchmark dose (BMD) values were derived from transcriptomic dose-response analysis. Differences in LC50 and transcriptomic responses across the cell lines were noted. For methylmercury, the tPOD mode values were 14.5, 20.5, and 17.8 ppb for the gill, liver, and gut cells, respectively. The most sensitive pathway (pathway BMDs in parentheses) was ferroptosis in the gill (3.1 ppb) and liver (3.5 ppb), and glutathione metabolism in the gut (6.6 ppb). For fluoxetine, the tPOD mode values were 109.4, 108.4, and 97.4 ppb for the gill, liver, and gut cells, respectively. The most sensitive pathway was neurotrophin signaling in the gill (147 ppb) and dopaminergic signaling in the gut (86.3 ppb). For both chemicals, the gene tPOD and pathway BMD values were lower than cytotoxic concentrations in vitro, and within 10-fold below the in vivo LC50s. By bringing together transcriptomics and dose-response analysis with an OECD test method in three cell lines, the results help to establish an in vitro method yielding tPOD values that are hypothesized to be protective of in vivo concentrations associated with adverse outcomes, and also give insights into mechanisms of action. Environ Toxicol Chem 2022;41:1982-1992. © 2022 SETAC.
Keyphrases
  • single cell
  • induced apoptosis
  • rna seq
  • cell cycle arrest
  • genome wide
  • mass spectrometry
  • gene expression
  • copy number
  • simultaneous determination
  • pi k akt