Login / Signup

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries.

Longtao MaShengmei ChenNa LiZhuoxin LiuZijie TangJuan Antonio ZapienShimou ChenJun FanChunyi Zhi
Published in: Advanced materials (Deerfield Beach, Fla.) (2020)
An ionic-liquid-based Zn salt electrolyte is demonstrated to be an effective route to solve both the side-reaction of the hydrogen evolution reaction (HER) and Zn-dendrite growth in Zn-ion batteries. The developed electrolyte enables hydrogen-free, dendrite-free Zn plating/stripping over 1500 h cycle (3000 cycles) at 2 mA cm-2 with nearly 100% coulombic efficiency. Meanwhile, the oxygen-induced corrosion and passivation are also effectively suppressed. These features bring Zn-ion batteries an unprecedented long lifespan over 40 000 cycles at 4 A g-1 and high voltage of 2.05 V with a cobalt hexacyanoferrate cathode. Furthermore, a 28.6 µm thick solid polymer electrolyte of a poly(vinylidene fluoride-hexafluoropropylene) film filled with poly(ethylene oxide)/ionic-liquid-based Zn salt is constructed to build an all-solid-state Zn-ion battery. The all-solid-state Zn-ion batteries show excellent cycling performance of 30 000 cycles at 2 A g-1 at room temperature and withstand high temperature up to 70 °C, low temperature to -20 °C, as well as abuse test of bending deformation up to 150° for 100 cycles and eight times cutting. This is the first demonstration of an all-solid-state Zn-ion battery based on a newly developed electrolyte, which meanwhile solves the deep-seated hydrogen evolution and dendrite growth problem in traditional Zn-ion batteries.
Keyphrases
  • ion batteries
  • solid state
  • ionic liquid
  • heavy metals
  • room temperature
  • drinking water
  • endothelial cells
  • reduced graphene oxide
  • high intensity
  • visible light