Login / Signup

Controlling Molecular Conformation for Highly Efficient and Stable Deep-Blue Copolymer Light-Emitting Diodes.

Iain HamiltonNathan ChanderNathan J CheethamMinwon SuhMatthew DysonXuhua WangPaul N StavrinouMichael CassDonal D C BradleyJi-Seon Kim
Published in: ACS applied materials & interfaces (2018)
We report a novel approach to achieve deep-blue, high-efficiency, and long-lived solution-processed polymer light-emitting diodes (PLEDs) via a simple molecular level conformation change of an emissive conjugated polymer. We introduce rigid β-phase segments into a 95% fluorene-5% arylamine copolymer emissive layer. The arylamine moieties at low density act as efficient exciton formation sites in PLEDs, whereas the conformational change alters the nature of the dominant luminescence from a broad, charge transfer like emission to a significantly blue-shifted and highly vibronically structured excitonic emission. As a consequence, we observe a significant improvement in the Commission International de L'Eclairage ( x, y) coordinates from (0.149, 0.175) to (0.145, 0.123) while maintaining high efficiency and improved stability. We achieve a peak luminous efficiency, η = 3.60 cd/A, and a luminous power efficiency, ηw = 2.44 lm/W, values that represent state-of-the-art performance for single copolymer deep-blue PLEDs. These values are 5-fold better than for otherwise-equivalent, β-phase poly(9,9-dioctylfluorene) PLEDs (0.70 cd/A and 0.38 lm/W). This report represents the first demonstration of the use of molecular conformation as a simple but effective method to control the optoelectronic properties of a fluorene copolymer; previous examples have been confined to homopolymers.
Keyphrases
  • high efficiency
  • light emitting
  • highly efficient
  • molecular dynamics simulations
  • single molecule
  • drug release
  • crystal structure
  • solid state
  • quantum dots