Microstructural Characterization of TiC-White Cast-Iron Composites Fabricated by In Situ Technique.
Aida B MoreiraRicardo O SousaPedro LacerdaLaura M M RibeiroAna M P PintoManuel Fernando VieiraPublished in: Materials (Basel, Switzerland) (2020)
High-chromium white cast-iron specimens locally reinforced with TiC-metal matrix composites were successfully produced via an in situ technique based on combustion synthesis. Powder mixtures of Ti, Al, and graphite were prepared and compressed to fabricate green powder compacts that were inserted into the mold cavity before the casting. The heat of the molten iron causes the ignition of the combustion reaction of the reactant powders, resulting in the formation of the TiC by self-propagating high-temperature synthesis. The microstructure of the resultant composites and the bonding interfaces was characterized by scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural results showed a good adhesion of the composite, suggesting an effective infiltration of the metal into the inserted compact, yet a non-homogeneous distribution of the TiC in the martensite matrix was observed. Based on the results, the in situ synthesis appears to be a great potential technique for industrial applications.
Keyphrases
- electron microscopy
- obsessive compulsive disorder
- white matter
- high temperature
- reduced graphene oxide
- ionic liquid
- iron deficiency
- particulate matter
- high resolution
- heavy metals
- wastewater treatment
- multiple sclerosis
- deep brain stimulation
- municipal solid waste
- computed tomography
- escherichia coli
- pseudomonas aeruginosa
- cystic fibrosis
- staphylococcus aureus
- biofilm formation
- gas chromatography mass spectrometry
- low cost
- candida albicans