Login / Signup

Effect of Levodopa Medication on Human Brain Connectome in Parkinson's Disease-A Combined Graph Theory and EEG Study.

Sajjad FarashiMojtaba Khazaei
Published in: Clinical EEG and neuroscience (2022)
Background . Levodopa-based drugs are widely used for mitigating the complications induced by Parkinson's disease (PD). Despite the positive effects, several issues regarding the way that levodopa changes brain activities have remained unclear. Methods. A combined strategy using EEG data and graph theory was used for investigating how levodopa changed connectome and processing hubs of the brain during resting-state. Obtained results were subjected to ANOVA test and multiple-comparison post-hoc correction procedure. Results. Outcomes showed that graph topology was not significantly different between PD and healthy groups during the eyes-closed condition, while in the eyes-open condition, statistically significant differences were found. The main effect of levodopa medication was observed for gamma-band activity in which levodopa changed the brain connectome toward a star-like topology. Considering the beta subband of EEG data, graph leaf number increased following levodopa medication in PD patients. Enhanced brain connectivity in the gamma band and reduced beta band connections in the basal ganglia were also observed after levodopa medication. Furthermore, source localization using dipole fitting showed that levodopa suppressed the activity of collateral trigone. Conclusion. Our combined EEG and graph analysis showed that levodopa medication changed the brain connectome, especially in the high-frequency range of brain electrical activities (beta and gamma).
Keyphrases