2-Aminopurine-based quencher-free DNA tweezers with fluorescence properties well tuned by surrounding bases.
Fangfang YangShuang LiJialiang WuShu-Feng LiuPublished in: Analytical methods : advancing methods and applications (2024)
Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.