Login / Signup

Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity.

Shosuke ItoMaki HinoshitaErina SuzukiMakoto OjikaKazumasa Wakamatsu
Published in: Chemical research in toxicology (2017)
The exposure of human skin to 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone, RK) is known to cause chemical/occupational leukoderma. RK has a structure closely related to 4-(4-hydroxyphenyl)-2-butanol (rhododendrol), a skin whitening agent that was found to cause leukoderma in the skin of consumers in 2013. Rhododendrol is a good substrate for tyrosinase and causes a tyrosinase-dependent cytotoxicity to melanocytes, cells that are responsible for skin pigmentation. Therefore, it is expected that RK exerts its cytotoxicity to melanocytes through the tyrosinase-catalyzed oxidation to cytotoxic o-quinones. The results of this study demonstrate that the oxidation of RK by mushroom tyrosinase rapidly produces 4-(3-oxobutyl)-1,2-benzoquinone (RK-quinone), which is converted within 10-20 min to (E)-4-(3-oxo-1-butenyl)-1,2-benzoquinone (DBL-quinone). These quinones were identified as their corresponding catechols after reduction by ascorbic acid. RK-quinone and DBL-quinone quantitatively bind to the small thiol N-acetyl-l-cysteine to form thiol adducts and can also bind to the thiol protein bovine serum albumin through its cysteinyl residue. DBL-quinone is more reactive than RK-quinone, as judged by their half-lives (6.2 min vs 10.5 min, respectively), and decays rapidly to form an oligomeric pigment (RK-oligomer). The RK-oligomer can oxidize GSH to GSSG with a concomitant production of hydrogen peroxide, indicating its pro-oxidant activity, similar to that of the RD-oligomer. These results suggest that RK is cytotoxic to melanocytes through the binding of RK-derived quinones to thiol proteins and the pro-oxidant activity of the RK-oligomer.
Keyphrases
  • hydrogen peroxide
  • anti inflammatory
  • oxidative stress
  • wound healing
  • cell proliferation
  • soft tissue
  • cell death
  • binding protein
  • fluorescent probe
  • small molecule
  • structural basis
  • single molecule