Login / Signup

Highly Oxidized Second-Generation Products from the Gas-Phase Reaction of OH Radicals with Isoprene.

Torsten BerndtHartmut HerrmannMikko SipiläMarkku Kulmala
Published in: The journal of physical chemistry. A (2016)
The gas-phase reaction of OH radicals with isoprene has been investigated in an atmospheric pressure flow tube at 293 ± 0.5 K with special attention to the second-generation products. Reaction conditions were optimized to achieve a predominant reaction of RO2 radicals with HO2 radicals. Chemical ionization-atmospheric pressure interface-time-of-flight mass spectrometry served as the analytical technique in order to follow the formation of RO2 radicals and closed-shell products containing at least four O atoms in the molecule. The reaction products were detected as adducts with the reagent ions using acetate, lactate, or nitrate in the ionization process. Observed signals were attributed to a series of C5-products with multiple hydroxy, hydroperoxy, and probably carbonyl groups. H/D exchange experiments supported the product identification. The generation of the detected second-generation products can be mechanistically explained starting from the OH radical reaction of hydroxy hydroperoxide isomers, HO-C5H8-OOH. These isomers represent the dominant products of the initial OH radical attack on isoprene. Dihydroxy dihydroperoxides, (HO)2-C5H8-(OOH)2, were analyzed as the main second-generation products beside the dihydroxy epoxides. A simple kinetic analysis revealed that the observed second-generation products in total (other than dihydroxy epoxides) were formed with an estimated molar yield of 10.0-1.5+2.1 % with respect to converted hydroxy hydroperoxides. A formation yield of 5.8-0.9+1.3 % has been deduced for the main product (HO)2-C5H8-(OOH)2. The detected, highly oxidized isoprene products represent potential secondary organic aerosol precursors. An annual, global (HO)2-C5H8-(OOH)2 formation strength of (16-35) × 106 metric tons is estimated based on product measurements of this study and literature data regarding the formation of the dihydroxy epoxide isomers for an annual isoprene emission of 454 × 106 metric tons of carbon.
Keyphrases
  • systematic review
  • pi k akt
  • signaling pathway
  • risk assessment
  • climate change
  • big data
  • cell proliferation
  • liquid chromatography
  • atomic force microscopy
  • tandem mass spectrometry
  • gas chromatography