Origin of Fluorescence from Boranils in the Crystalline Phase.
Hatun H T Al-SharifRaymond ZiesselPaul G WaddellCasey DixonAnthony HarrimanPublished in: The journal of physical chemistry. A (2020)
A small series of boranil complexes has been studied by fluorescence spectroscopy. Weakly fluorescent in most organic solvents at room temperature, the target compounds display bright emission in the crystalline phase. X-ray diffraction patterns obtained for single crystals indicate a distorted tetrahedral geometry around the O-B-N center with the boron atom being displaced from the plane of the heterobicyclic ring. Consideration of the various bond lengths in comparison with those of reference compounds indicates that the ancillary phenyl ring, bearing different para-substituents, does not make a prominent contribution to the molecular dipole moment in the solid state. Absorption and fluorescence spectra recorded for the crystals remain remarkably similar to those for liquid solutions and display large Stokes shifts. Proximity broadening is observed in one case. The nitrophenyl derivative exhibits additional absorption and emission bands unique to the solid state and could be indicative of an intermolecular charge-transfer transition. The optical properties are discussed in terms of the crystal packing diagrams.