Login / Signup

Ventricular contraction and relaxation rates during muscle metaboreflex activation in heart failure: are they coupled?

Joseph MannozziLouis MassoudJasdeep KaurMatthew CoutsosDonal S O'Leary
Published in: Experimental physiology (2020)
The relationship between contraction and relaxation rates of the left ventricle varies with exercise. In in vitro models, this ratio was shown to be relatively unaltered by changes in sarcomere length, frequency of stimulation, and β-adrenergic stimulation. We investigated whether the ratio of contraction to relaxation rate is maintained in the whole heart during exercise and muscle metaboreflex activation and whether heart failure alters these relationships. We observed that in healthy subjects the ratio of contraction to relaxation increases from rest to exercise as a result of a higher increase in contraction relative to relaxation. During muscle metaboreflex activation the ratio of contraction to relaxation is significantly reduced towards 1.0 due to a large increase in relaxation rate matching contraction rate. In heart failure, contraction and relaxation rates are significantly reduced, and increases during exercise are attenuated. A significant increase in the ratio was observed from rest to exercise although baseline ratio values were significantly reduced close to 1.0 when compared to healthy subjects. There was no significant change observed between exercise and muscle metaboreflex activation nor was the ratio during muscle metaboreflex activation significantly different between heart failure and control. We conclude that heart failure reduces the muscle metaboreflex gain and contraction and relaxation rates. Furthermore, we observed that the ratio of the contraction and relaxation rates during muscle metaboreflex activation is not significantly different between control and heart failure, but significant changes in the ratio in healthy subjects due to increased relaxation rate were abolished in heart failure.
Keyphrases