Login / Signup

Effects of Intense Electric Fields on the Double Proton Transfer in the Watson-Crick Guanine-Cytosine Base Pair.

Alya A ArabiChérif F Matta
Published in: The journal of physical chemistry. B (2018)
The double proton transfer reaction in the guanine-cytosine (GC) base pair is studied, using density functional theory, to understand the chances of mutations under the effect of uniform electric fields in the order of 108 to 109 V m-1. On the basis of potential energy surfaces, reaction Gibbs energies, equilibrium constants, imaginary frequencies, forward and reverse barrier heights, tunneling-corrected rate constants, half-lives of the forward and reverse reactions, percent tautomerization, and Boltzmann distributions, it was found that fields ≥+3.60 × 109 V m-1 facilitate the mutation in the GC base pair and reduce the rectification of point mutations. Fields applied along the double proton transfer in the - x (defined in the C to G direction) direction favor the canonical over the rare tautomers. Tunneling-corrected rate constants of the forward reaction increase exponentially with stronger fields in the - x direction and follow a Gaussian curve for the reverse reaction.
Keyphrases
  • electron transfer
  • density functional theory
  • molecular dynamics
  • escherichia coli
  • mass spectrometry
  • risk assessment
  • climate change
  • gas chromatography
  • high resolution
  • candida albicans