Enhancement of cardiac contractility using gold-coated SU-8 cantilevers and their application to drug-induced cardiac toxicity tests.
Jongyun KimArunkumar ShanmugasundaramDong Weon LeePublished in: The Analyst (2021)
Herein, we propose an array of gold (Au)-coated SU-8 cantilevers with microgrooves for improved maturation of cardiomyocytes and describe its applications to drug-induced cardiac toxicity tests. Firstly, we evaluated the effect of cell culture substrates such as polydimethylsiloxane (PDMS), polyimide (PI), and SU-8 on the cardiomyocyte's maturation. Among these, the SU-8 with microgroove structures exhibits improved cardiomyocyte maturation. Further, thin layers of graphene and Au are coated on SU-8 substrates and the effects of these materials on cardiomyocyte maturation are evaluated by analyzing the expression of proteins such as alpha-actinin, Connexin 43 (Cx43), and Vinculin. While both conductive materials enhanced protein expression when compared to bare SU-8, the Au-coated SU-8 substrates demonstrated superior cardiomyocyte maturation. The cantilever structure is constructed using microgroove patterned SU-8 with and without an Au coating. The Au-coated SU-8 cantilever showed maximum displacement of 17.6 ± 0.3 μm on day 21 compared to bare SU-8 (14.2 ± 0.4 μm) owing to improved cardiomyocytes maturation. Verapamil and quinidine are used to characterize drug-induced changes in the contraction characteristics of cardiomyocytes on bare and Au-coated SU-8 cantilevers. The relative contraction forces and beat rates changed according to the calcium and sodium channel related drugs. Matured cardiomyocytes are less influenced by the drugs compared to immature cardiomyocytes and showed reliable IC50 values. These results indicate that the proposed Au-coated SU-8 cantilever array could help improve the accuracy of toxicity screening results by allowing for the use of cardiomyocytes that have been matured on the drug screening platform.
Keyphrases
- drug induced
- liver injury
- sensitive detection
- reduced graphene oxide
- high glucose
- oxidative stress
- angiotensin ii
- left ventricular
- emergency department
- adverse drug
- high resolution
- mass spectrometry
- wastewater treatment
- gold nanoparticles
- blood pressure
- heart failure
- smooth muscle
- endothelial cells
- electronic health record