Login / Signup

Red Phosphorus: An Elementary Semiconductor for Room-Temperature NO2 Gas Sensing.

Qiang ZhuHao WangJun YangChangsheng XieDawen ZengNi Zhao
Published in: ACS sensors (2018)
Black and blue phosphorus (both allotropes of elementary phosphorus) have recently been widely explored as an active material for electronic devices, and their potential in gas sensing applications has been demonstrated. On the other hand, amorphous red phosphorus (a-RP), a much cheaper and readily available phosphorus allotrope, has seldom been investigated as an electronic material, and its gas sensing properties have never been studied. In this work we have investigated these properties of a-RP by combining experimental characterizations with theoretical calculations. We found that a-RP exhibited an amphoteric character for detecting both commonly regarded reducing and oxidizing gas molecules, featuring a negative correlation between the electrical resistance of a-RP and the gas concentration. Interestingly, the a-RP based sensors appear to be particularly suitable for room-temperature NO2 detection, exhibiting excellent sensitivity and selectivity, as well as fast temporal response and recovery. A unique sensing feature of a-RP toward NO2 was identified, which is associated with the expansion of P-P bonds upon NO2 chemisorption. Based on density functional theory calculations we proposed a physiochemical model to elaborate the synergistic effects of the P-P bond expansion and Langmuir isotherm adsorption on the electronic properties and gas sensing processes of a-RP.
Keyphrases