Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.