Login / Signup

Mechanistic Investigations into and Control of Anisotropic Metal-Organic Framework Growth.

Brittany L BonnettKsenija D GlusacKatie FlintMeng CaiXiaozhou YangHannah D CornellAshleigh TaylorAmanda J Morris
Published in: Inorganic chemistry (2021)
The porphyrinic metal-organic framework, PCN-222, exhibits anisotropic growth behavior to form nanorods and microrods with aspect ratios 3 < x < 94. Control of microrod aspect ratios has been demonstrated through the identification of several factors that dictate crystal growth, particularly the concentrations of a ligand, a modulator, and an exogenous base. An increase in the local concentration of a deprotonated ligand, which is proportional to the nucleation rate, is associated with smaller crystals, while increased modulator concentration leads to longer microrods. Addition of a deprotonating agent not only contributes to higher aspect ratios but also results in an improvement to particle dispersity. Here, we report acid-base co-modulation methods with difluoroacetic acid and triethylamine to effectively tune PCN-222 aspect ratios. A series of mechanisms is identified for the growth of PCN-222: (1) ligand deprotonation, (2) nucleation, (3) oriented attachment, (4) Ostwald ripening, and (5) dissolution-recrystallization. Time trials of co-modulated samples revealed three separate ripening growth events, with each resulting in larger and more monodisperse crystals. With an understanding of these crystal growth factors and mechanisms, the highest aspect ratio, non-templated metal-organic frameworks were synthesized (94 ± 9).
Keyphrases
  • metal organic framework
  • room temperature
  • single cell
  • finite element