Login / Signup

Investigating Protein-Protein Allosteric Network using Current-Flow Scheme.

Wesley M Botello-SmithYun Lyna Luo
Published in: Journal of computational chemistry (2019)
Protein dynamic network analysis provides a powerful tool for investigating protein allosteric regulation. We recently developed a current-flow betweenness scheme for protein network analysis and demonstrated that this method, that is, using current-flow betweenness as edge weights, is more appropriate and more robust for investigating the signal transmission between two predefined protein residues or domains as compared with direct usage of correlation scores as edge weights. Here we seek to expand the current-flow scheme to study allosteric regulations involving protein-protein binding. Specifically, we investigated three gain-of-function mutations located at the binding interface of ALK2 (also known as ACVR1) kinase and its inhibitory protein FKBP12. We first searched for the optimal smoothing function for contact network construction and then calculated the subnetwork between FKBP12 protein and the kinase ATP binding site using current-flow betweenness. By comparing the networks between the wild-type and three mutants, we have identified statistically significant changes in the protein-protein networks that are common among all three mutants that allosterically shift the kinase toward a catalytically competent configuration. © 2019 Wiley Periodicals, Inc.
Keyphrases
  • protein protein
  • small molecule
  • network analysis
  • wild type
  • binding protein
  • amino acid
  • high resolution
  • high speed
  • advanced non small cell lung cancer
  • high density