Login / Signup

Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden.

Erik A B HughesRichard L WilliamsSophie C CoxLiam M Grover
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
Calcium phosphate (CaPO4) tubes with features comparable to mineralized biological microstructures, such as Haversian canals, were grown from a calcium gel/phosphate solution chemical garden system. A significant difference in gel mass in response to high and low solute phosphate equivalent environments existed within 30 min of solution layering upon gel (p = 0.0067), suggesting that the nature of advective movement between gel and solution is dependent on the solution concentration. The transport of calcium cations (Ca2+) and phosphate anions (PO43-) was quantified and changes in pH were monitored to explain the preferential formation of tubes within a PO43- concentration range of 0.5-1.25 M. Ingress from the anionic solution phase into the gel followed by the liberation of Ca2+ ions from the gel was found to be essential for acquiring self-assembled tubular CaPO4 structures. Tube analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro X-ray florescence (μ-XRF) revealed hydroxyapatite (HA, Ca10(PO4)6(OH)2) and dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O) phases organized in a hierarchical manner. Notably, the tubule diameters ranged from 100 to 150 μm, an ideal size for the permeation of vasculature in biological hard tissue.
Keyphrases
  • electron microscopy
  • high resolution
  • wound healing
  • hyaluronic acid
  • ionic liquid
  • solid state
  • computed tomography
  • magnetic resonance imaging
  • single cell
  • mass spectrometry
  • quantum dots