Login / Signup

Controlled Intercalation and Chemical Exfoliation of Layered Metal-Organic Frameworks Using a Chemically Labile Intercalating Agent.

Yanjun DingYing-Pin ChenXinlei ZhangLiang ChenZhaohui DongHai-Long JiangHangxun XuHong-Cai Zhou
Published in: Journal of the American Chemical Society (2017)
Creating ordered two-dimensional (2D) metal-organic framework (MOF) nanosheets has attracted extensive interest. However, it still remains a great challenge to synthesize ultrathin 2D MOF nanosheets with controlled thickness in high yields. In this work, we demonstrate a novel intercalation and chemical exfoliation approach to obtain MOF nanosheets from intrinsically layered MOF crystals. This approach involves two steps: first, layered porphyrinic MOF crystals are intercalated with 4,4'-dipyridyl disulfide through coordination bonding with the metal nodes; subsequently, selective cleavage of the disulfide bond induces exfoliation of the intercalated MOF crystals, leading to individual freestanding MOF nanosheets. This chemical exfoliation process can proceed efficiently at room temperature to produce ultrathin (∼1 nm) 2D MOF nanosheets in ∼57% overall yield. The obtained ultrathin nanosheets exhibit efficient and far superior heterogeneous photocatalysis performance compared with the corresponding bulk MOF.
Keyphrases
  • metal organic framework
  • room temperature
  • reduced graphene oxide
  • highly efficient
  • ionic liquid
  • early stage
  • radiation therapy
  • transition metal
  • dna binding