Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints.
Sajid SajidSalem Al ZahmiImen Ben SalemJongee ParkIhab M ObaidatPublished in: Nanomaterials (Basel, Switzerland) (2023)
Simplifying the design of lead-free perovskite solar cells (PSCs) has drawn a lot of interest due to their low manufacturing cost and relative non-toxic nature. Focus has been placed mostly on reducing the toxic lead element and eliminating the requirement for expensive hole transport materials (HTMs). However, in terms of power conversion efficiency (PCE), the PSCs using all charge transport materials surpass the environmentally beneficial HTM-free PSCs. The low PCEs of the lead-free HTM-free PSCs could be linked to poorer hole transport and extraction as well as lower light harvesting. In this context, a lead-free perovskite homojunction-based HTM-free PSC was investigated, and the performance was then assessed using a Solar Cell Capacitance Simulator (SCAPS). A two-step method was employed to fabricate lead-free perovskite homojunction-based HTM-free PSCs in order to validate the simulation results. The simulation results show that high hole mobility and a narrow band gap of cesium tin iodide (CsSnI 3 ) boosted the hole collection and absorption spectrum, respectively. Additionally, the homojunction's built-in electric field, which was identified using SCAPS simulations, promoted the directed transport of the photo-induced charges, lowering carrier recombination losses. Homojunction-based HTM-free PSCs having a CsSnI 3 layer with a thickness of 100 nm, defect density of 10 15 cm -3 , and interface defect density of 10 18 cm -3 were found to be capable of delivering high PCEs under a working temperature of 300 K. When compared to formamidinium tin iodide (FASnI 3 )-based devices, the open-circuit voltage (V oc ), short-circuit density (J sc ), fill factor (FF), and PCE of FASnI 3 /CsSnI 3 homojunction-based HTM-free PSCs were all improved from 0.66 to 0.78 V, 26.07 to 27.65 mA cm -2 , 76.37 to 79.74%, and 14.62 to 19.03%, respectively. In comparison to a FASnI 3 -based device (PCE = 8.94%), an experimentally fabricated device using homojunction of FASnI 3 /CsSnI 3 performs better with V oc of 0.84 V, J sc of 22.06 mA cm -2 , FF of 63.50%, and PCE of 11.77%. Moreover, FASnI 3 /CsSnI 3 -based PSC is more stable over time than its FASnI 3 -based counterpart, preserving 89% of its initial PCE. These findings provide promising guidelines for developing highly efficient and environmentally friendly HTM-free PSCs based on perovskite homojunction.