Login / Signup

Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension.

Boyu JiaJing WangYao WuMingyu ZhangYufeng JiangZheng TangThomas P RussellXiaowei Zhan
Published in: Journal of the American Chemical Society (2019)
The unidirectional extension of a smaller fused-ring system into a larger one in a single direction will increase the conjugation length, allowing a fine-tuning of electronic properties. Here, we designed and synthesized a unidirectionally extended fused-8-ring-based nonfullerene acceptor, AOIC, and a bidirectionally extended fused-11-ring electron acceptor, IUIC2, and compared these with the parent fused-5-ring electron acceptor, F5IC. They share the same electron-accepting groups and alkylphenyl side chains but have different fused-ring electron-donating units. Core extension from 5 to 11 rings up-shifts the energy levels, red shifts the absorption spectra, and reduces bandgaps. The unidirectionally extended AOIC has the highest mobility (2.1 × 10-3 cm2 V-1 s-1) relative to the parent F5IC (1.0 × 10-3 cm2 V-1 s-1) and the bidirectionally extended IUIC2 (4.7 × 10-4 cm2 V-1 s-1). Upon blending with the donor PTB7-Th, AOIC-based organic photovoltaic cells show an efficiency of 13.7%, much better than that of F5IC-based cells (5.61%) and IUIC2-based cells (4.48%).
Keyphrases
  • solar cells
  • induced apoptosis
  • cell cycle arrest
  • cell death
  • endoplasmic reticulum stress
  • oxidative stress
  • signaling pathway
  • air pollution
  • electron microscopy