The initiation and early development of apical-basal polarity in Toxoplasma gondii.
Luisa F Arias PadillaJonathan Munera LopezAika ShibataJohn M MurrayKe HuPublished in: Journal of cell science (2024)
The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivity to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Lastly, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has modest impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.