Login / Signup

The Use of Metabolomics and Inflammatory Mediator Profiling Provides a Novel Approach to Identifying Pediatric Appendicitis in the Emergency Department.

Nusrat S ShommuCraig N JenneJaime BlackwoodDori-Ann MartinAri R JoffeRobin EcclesMary BrindleIjab KhanaferHans J VogelGraham C Thompson
Published in: Scientific reports (2018)
Multiplexed profiling approaches including various 'omics' platforms are becoming a new standard of biomarker development for disease diagnosis and prognosis. The present study applied an integrated metabolomics and cytokine profiling approach as a potential aid to the identification of pediatric appendicitis. Metabolic analysis using serum (n = 121) and urine (n = 102) samples, and cytokine analysis using plasma (n = 121) samples from children presenting to the Emergency Department with abdominal pain were performed. Comparisons between children with appendicitis vs. non-appendicitis abdominal pain, and with perforated vs. non-perforated appendicitis were made using multivariate statistics. Serum and urine biomarker patterns were statistically significantly different between groups. The combined serum metabolomics and inflammatory mediator model revealed clear separation between appendicitis and non-appendicitis abdominal pain (AUROC: 0.92 ± 0.03) as well as for perforated and non-perforated appendicitis (AUROC: 0.88 ± 0.05). Urine metabolic analysis also demonstrated distinction between the groups appendicitis and non-appendicitis abdominal pain (AUROC: 0.85 ± 0.04), and perforated and non-perforated appendicitis (AUROC: 0.98 ± 0.02). In children presenting to the Emergency Department with abdominal pain, metabolomics and inflammatory mediator profiling are capable of distinguishing children with appendicitis from those without. The approach also differentiates between severities of disease. These results provide an important first step towards a potential aid for improving appendicitis identification.
Keyphrases
  • abdominal pain
  • emergency department
  • single cell
  • mass spectrometry
  • young adults
  • oxidative stress
  • climate change