Inverse Design of Light Manipulating Structural Phase Transition in Solids.
Wen-Hao LiuHaowen LiuZhi WangShushen LiLinwang WangJun-Wei LuoPublished in: The journal of physical chemistry letters (2023)
This Perspective focuses on recent advances in understanding ultrafast processes involved in photoinduced structural phase transitions and proposes a strategy for precise manipulation of such transitions. It has been demonstrated that photoexcited carriers occupying empty antibonding or bonding states generate atomic driving forces that lead to either stretching or shortening of associated bonds, which in turn induce collective and coherent motions of atoms and yield structural transitions. For instance, phase transitions in IrTe 2 and VO 2 , and nonthermal melting in Si, can be explained by the occupation of specific local bonding or antibonding states during laser excitation. These cases reveal the electronic-orbital-selective nature of laser-induced structural transitions. Based on this understanding, we propose an inverse design protocol for achieving or preventing a target structural transition by controlling the related electron occupations with orbital-selective photoexcitation. Overall, this Perspective provides a comprehensive overview of recent advancements in dynamical structural control in solid materials.