Login / Signup

Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium.

Wei-Rong CuiCheng-Rong ZhangWei JiangFang-Fang LiRu-Ping LiangJuewen LiuJian-Ding Qiu
Published in: Nature communications (2020)
Uranium is a key element in the nuclear industry, but its unintended leakage has caused health and environmental concerns. Here we report a sp2 carbon-conjugated fluorescent covalent organic framework (COF) named TFPT-BTAN-AO with excellent chemical, thermal and radiation stability is synthesized by integrating triazine-based building blocks with amidoxime-substituted linkers. TFPT-BTAN-AO shows an exceptional UO22+ adsorption capacity of 427 mg g-1 attributable to the abundant selective uranium-binding groups on the highly accessible pore walls of open 1D channels. In addition, it has an ultra-fast response time (2 s) and an ultra-low detection limit of 6.7 nM UO22+ suitable for on-site and real-time monitoring of UO22+, allowing not only extraction but also monitoring the quality of the extracted water. This study demonstrates great potential of fluorescent COFs for radionuclide detection and extraction. By rational designing target ligands, this strategy can be extended to the detection and extraction of other contaminants.
Keyphrases