Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer.
Chao SangYunjun LuoPublished in: Polymers (2024)
Glycidyl azide polymer energetic thermoplastic elastomer (GAP-ETPE) has become a research hotspot due to its excellent comprehensive performance. In this paper, metastable intermolecular energetic nanocomposites (MICs) were prepared by a simple and safe method, and the catalytic performance for decomposition of GAP-ETPE was studied. An X-ray diffraction (XRD) analysis showed that the MICs exhibited specific crystal formation, which proved that the MICs were successfully prepared. Morphology, surface area, and pore structure analysis showed that the Al/copper ferrite and Al/Fe 2 O 3 MICs had a large specific surface area mesoporous structure. The Al/CuO MICs did not have a mesoporous structure or a large surface area. The structure of MICs led to their different performance for the GAP-ETPE decomposition catalysis. The increase in specific surface area is a benefit of the catalytic performance. Due to the easier formation of complexes, MICs containing Cu have better catalytic performance for GAP-ETPE decomposition than those containing Fe. The conclusions of this study can provide a basis for the adjustment of the catalytic performance of MICs in GAP-ETPE propellants.