Login / Signup

Tissue-specific deletion of mouse basolateral uniporter LAT4 (Slc43a2) reveals its crucial role in small intestine and kidney amino acid transport.

Anuradha RajendranNadège PoncetLalita Oparija-RogenmozereBrigitte HerzogFrancois Verrey
Published in: The Journal of physiology (2020)
Amino acid (AA) transporter LAT4 (Slc43a2) functions as facilitated diffusion uniporter for essential neutral AAs and is highly expressed at the basolateral membrane of small intestine (SI) and kidney tubule epithelia. Previously, we showed that LAT4 global knockout (KO) mice were born at the expected Mendelian ratio but died within 10 days. Their failure to gain weight and a severe malnutrition-like phenotype contrasted with apparently normal feeding, suggesting a severe intestinal AA absorption defect. In the present study, using conditional global and tissue-specific LAT4 KO mouse models, we nullified this hypothesis, demonstrating that the selective lack of intestinal LAT4 does not impair postnatal development, although it leads to an absorption defect accompanied by delayed gastrointestinal motility. Kidney tubule-specific LAT4 KO led to a substantial aminoaciduria as a result of a reabsorption defect of AAs transported by LAT4 and of other AAs that are substrates of the antiporter LAT2, demonstrating, in vivo, the functional co-operation of these two transporters. The major role played by basolateral uniporters in the kidney was further supported by the observation that, in mice lacking TAT1, another neutral AA uniporter, a partial LAT4 KO led to a synergistic increase of urinary AA loss. Surprisingly in the SI, the same combined KO induced no major effect, suggesting yet unknown compensatory mechanisms. Taken together, the lethal malnutrition-like phenotype observed previously in LAT4 global KO pups is suggested to be the consequence of a combinatorial effect of LAT4 deletion in the SI, kidney and presumably other tissues.
Keyphrases