Simple and Efficient Synthesis of 3-Aryl-2-oxazolidinone Scaffolds Enabling Increased Potency toward Biofilms.
Audrey R N NdukweSophia HawasJilong QinSandra WiedbraukMakrina TotsikaNathan R B BoaseKathryn E Fairfull-SmithPublished in: Molecular pharmaceutics (2023)
Infectious diseases caused by bacterial pathogens are a leading cause of mortality worldwide. In particular, recalcitrant bacterial communities known as biofilms are implicated in persistent and difficult to treat infections. With a diminishing antibiotic pipeline, new treatments are urgently required to combat biofilm infections. An emerging strategy to develop new treatments is the hybridization of antibiotics. The benefit of this approach is the extension of the useful lifetime of existing antibiotics. The oxazolidinones, which include the last resort antibiotic linezolid, are an attractive target for improving antibiofilm efficacy as they present one of the most recently discovered classes of antibiotics. A key step in the synthesis of new 3-aryl-2-oxazolidinone derivatives is the challenging formation of the oxazolidinone ring. Herein we report a direct synthetic route to the piperazinyl functionalized 3-aryl-2-oxazolidinone 17 . We also demonstrate an application of these piperazine molecules by functionalizing them with a nitroxide moiety as a strategy to extend the useful lifetime of oxazolidinones and improve their potency against Methicillin-resistant Staphylococcus aureus (MRSA) biofilms. The antimicrobial susceptibility of the linezolid-nitroxide conjugate 11 and its corresponding methoxyamine derivative 12 (a control for biofilm dispersal) was assessed against planktonic cells and biofilms of MRSA. In comparison to linezolid and our lead compound 10 (a piperazinyl oxazolidinone derivative), the linezolid-nitroxide conjugate 11 displayed a minimum inhibitory concentration that was 4-16-fold higher. The opposite effect was seen in biofilms where the linezolid-nitroxide hybrid 11 was >2-fold more effective (160 μg/mL versus >320 μg/mL) in eradicating MRSA biofilms. The methoxyamine derivative 12 performed on par with linezolid. The drug-likeness of the compounds was also assessed, and all compounds were predicted to have good oral bioavailability. Our piperazinyl oxazolidinone derivative 10 was confirmed to be lead-like and would be a good lead candidate for future functionalized oxazolidinones. The modification of antibiotics with a dispersal agent appears to be a promising approach for eradicating MRSA biofilms and overcoming the antibiotic resistance associated with the biofilm mode of growth.
Keyphrases
- methicillin resistant staphylococcus aureus
- candida albicans
- staphylococcus aureus
- biofilm formation
- pseudomonas aeruginosa
- infectious diseases
- induced apoptosis
- water soluble
- escherichia coli
- cancer therapy
- multidrug resistant
- risk factors
- drug delivery
- coronary artery disease
- cell cycle arrest
- clinical evaluation