Login / Signup

Macroevolutionary dynamics of climatic niche space.

Ignacio QuinteroMarc A SuchardWalter Jetz
Published in: Proceedings. Biological sciences (2022)
How and why lineages evolve along with niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here, we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e. species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the Cretaceous-Palaeogene (K-Pg) boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with the colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from the model-based integration of comprehensive environmental and phylogenetic information.
Keyphrases
  • genome wide
  • human health
  • gene expression
  • climate change
  • risk assessment
  • dna methylation
  • transcription factor
  • life cycle
  • solid state