AXDND1 is required to balance spermatogonial commitment and for sperm tail formation in mice and humans.
Brendan J HoustonJoseph NguyenD Jo MerrinerAnne E O'ConnorAlexandra M LopesLiina NagirnajaCorinna FriedrichSabine KlieschFrank TüttelmannKenneth I AstonDonald F ConradRobin M HobbsJessica E M DunleavyBrendan J HoustonPublished in: bioRxiv : the preprint server for biology (2023)
Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1 -/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.