Immobilizing ultrasmall Pt nanocrystals on 3D interweaving BCN nanosheet-graphene networks enables efficient methanol oxidation reaction.
Binfeng ShenYujie WeiPengyun SunHaiyan HeGuobing YingHuajie HuangPublished in: Dalton transactions (Cambridge, England : 2003) (2023)
Currently, the state-of-the-art anode catalysts employed in direct methanol fuel cells (DMFCs) consist of nanosize Pt dispersed on a carbonaceous support; however, the relatively weak Pt-carbon interfacial interactions severely affect their overall electrocatalytic activity and service life. Herein, we demonstrate a convenient and robust stereo-assembly strategy for the efficient immobilization of ultrasmall Pt nanocrystals on 3D interweaving porous B-doped g-C 3 N 4 nanosheet-graphene networks (Pt/BCN-G) by combining thermal annealing and solvothermal processes. This delicate configuration endowed the resulting hybrid nanoarchitecture with unusual textural merits, including 3D crosslinked porous skeletons, well-separated ultrathin nanosheets, rich B and N species, homogeneous Pt dispersion, stable heterointerface, and high electrical conductivity. Consequently, the 3D Pt/BCN-G nanoarchitecture with an optimized composition exhibited a large electrochemically active surface area of up to 121.2 m 2 g -1 , high mass activity of 1782.2 mA mg -1 , superior poison tolerance, and excellent cycling stability towards the electrooxidation of methanol, all of which exceeded that of the reference Pt/graphene, Pt/BCN, Pt/carbon nanotube, Pt/carbon black, and Pt/g-C 3 N 4 catalysts.