Characterization of Plocamium telfairiae Extract-Functionalized Au Nanostructures and Their Anti-Adipogenic Activity through PLD1.
Sun Young ParkHye Mi KangWoo Chang SongJin-Woo OhGeuntae ParkYoung-Whan ChoiPublished in: Marine drugs (2022)
Here, Au nanostructure (AuNS) biosynthesis was mediated through ethanolic extract of Plocamium telfairiae (PT) without the use of stabilizers or surfactants. PT-functionalized AuNSs (PT-AuNSs) were analyzed using ultraviolet-visible spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and Fourier-transform infrared spectroscopy. Stable monodisperse PT-AuNSs were synthesized, with a mean size of 15.36 ± 0.10 nm and zeta potential of -35.85 ± 1.36 mV. Moreover, biosynthetic AuNPs with a face-centered structure of PT-AuNS exhibited crystalline characteristics. In addition, many functional groups playing important roles in the biological reduction of PT extracts were adsorbed on the surface of PT-AuNSs. Furthermore, the effects of PT-AuNSs on adipogenesis in immature adipocytes were investigated. PT-AuNSs reduced morphological changes, lowered triglyceride content, and increased lipid accumulation by approximately 78.6% in immature adipocytes compared with the values in mature adipocytes (MDI-induced). PT-AuNS suppressed lipid accumulation by downregulating the transcript and protein expression of C/EBPα, PPARγ, SREBP 1, FAS, and aP2. Finally, PT-AuNS induced the transcript and protein expression of UCP1, PRDM16, and PGC1a, thereby increasing mitochondrial biogenesis in mature adipocytes and effectively inducing brown adipogenesis. In this study, the biosynthesized PT-AuNS was used as a potential therapeutic candidate because it conferred a potent anti-lipogenic effect. As a result, it can be used in various scientific fields such as medicine and the environment.