Login / Signup

Pulsed Electric Fields-Modified Ferritin Realizes Loading of Rutin by a Moderate pH Transition.

Demei MengBaowei WangTianyuan ZhenMin ZhangRui Yang
Published in: Journal of agricultural and food chemistry (2018)
Ferritin shares a conserved 24-subunit spherical structure and a unique reversible self-assembly characteristic. In the present work, pulsed electric fields (PEF) technology was used to treat red bean seed ferritin deprived of iron (apoRBF) to fabricate a PEF-modified apoRBF (PEFF). Results indicated that PEF treatment at 20 kV/cm for 7.05 ms retained the spherical structure but decreased the α-helix/β-sheet contents of ferritin. Differential scanning calorimetry (DSC) and UV-vis analyses proved that the thermal stability of the PEFF was decreased. Consequently, PEFF disassembled at pH 3.6 and reassembled when the pH was restored to 7.0, exhibiting a more moderate condition relevant to the traditional approach. Using the pH 3.6/7.0 transition routine, rutin molecules were successfully loaded within PEFF nanoparticle. The rutin-loaded PEFF showed a diameter of 12 nm with an encapsulation ratio of 13.7% (w/w). Moreover, PEFF played a role in protecting the encapsulated rutin molecules upon thermal treatment (20-70 °C). This work will be beneficial for extension of PEF application in protein modification and will improve ferritin functionalization as a carrier for food bioactive molecules by a moderate pH transition method.
Keyphrases