Login / Signup

Cold Laser Sintering of Medicines: Toward Carbon Neutral Pharmaceutical Printing.

Moe ElbadawiHanxiang LiParomita GhoshManal E AlkahtaniBingyuan LuAbdul W BasitSimon Gaisford
Published in: ACS sustainable chemistry & engineering (2024)
Selective laser sintering (SLS) is an emerging three-dimensional (3D) printing technology that uses a laser to fuse powder particles together, which allows the fabrication of personalized solid dosage forms. It possesses great potential for commercial use. However, a major drawback of SLS is the need to heat the powder bed while printing; this leads to high energy consumption (and hence a large carbon footprint), which may hinder its translation to industry. In this study, the concept of cold laser sintering (CLS) is introduced. In CLS, the aim is to sinter particles without heating the powder bed, where the energy from the laser, alone, is sufficient to fuse adjacent particles. The study demonstrated that a laser power above 1.8 W was sufficient to sinter both KollicoatIR and Eudragit L100-55-based formulations at room temperature. The cold sintering printing process was found to reduce carbon emissions by 99% compared to a commercial SLS printer. The CLS printed formulations possessed characteristics comparable to those made with conventional SLS printing, including a porous microstructure, fast disintegration time, and molecular dispersion of the drug. It was also possible to achieve higher drug loadings than was possible with conventional SLS printing. Increasing the laser power from 1.8 to 3.0 W increased the flexural strength of the printed formulations from 0.6 to 1.6 MPa, concomitantly increasing the disintegration time from 5 to over 300 s. CLS appears to offer a new route to laser-sintered pharmaceuticals that minimizes impact on the environment and is fit for purpose in Industry 5.0.
Keyphrases
  • high speed
  • emergency department
  • multiple sclerosis
  • heavy metals
  • human health
  • climate change
  • highly efficient
  • electronic health record