Transcriptome using Illumina sequencing reveals the traits of spermatogenesis and developing testes in Eriocheir sinensis.
Gen-Liang LiHui QianPublished in: PloS one (2017)
Chinese mitten crab (Eriocheir sinensis) has the spermatozoa with typical aflagellate, decondensed chromatin, cup-shaped nuclei, and radial arms. However, the mechanism of spermatogenesis during which the specific spermatozoa are generated in this species is yet unclear. Here, the transcriptome of developing testis in E. sinensis was analyzed using the ways of RNA-seq and bioinformatics analysis to identify candidate genes potentially involved in development of testis and spermatogenesis. The Illumina HiSeq2500 sequencing of three replicons of samples produced a total of 145.19 M clean reads representing with a total of 21.34 Gb bases and 45.48% GC content. 56.30% clean reads were mapped to the draft genome of E. sinensis. The assembly of the transcriptome yielded contigs of 5691802 sequences and unigenes of 406527 sequences. Total 24246 and 40793 transcripts were annotated using Swissprot and Nr database, respectively. There were 48213 (70.31%) and 7858 (46.25%) transcripts with identity of more than 99 matching to mature testis unigenes in the databases of Nr and EST, respectively. The analytic results of KOG, GO and KEGG showed wide potential molecular functions of transcripts in the developing testes. KEGG analysis of unigenes yielded total 9422 predicted genes. Those predicted genes were involved in total 216 KEGG pathways related to the physiological activities of developing testis. 1975 predicted genes were involved in cellular and subcellular structural alteration of male germ cells. There were important roles of some pathways in the processes of morphological and structural biogenesis pertaining to testis development and spermatogenesis. Other 583 unigenes encoding the genetic and epigenetic factors also be found, which might contribute to the decondensation and stability of decondensed nuclei in the spermatozoa. These predicted events provide a view of the potential molecular mechanisms of development of testis and spermatogenesis in E. sinensis.
Keyphrases
- genome wide
- rna seq
- single cell
- bioinformatics analysis
- dna methylation
- gene expression
- copy number
- germ cell
- induced apoptosis
- cell cycle arrest
- dna damage
- risk assessment
- cell death
- human health
- transcription factor
- artificial intelligence
- cell proliferation
- high resolution
- machine learning
- gas chromatography
- simultaneous determination
- single molecule