Non-Dyson Algebraic Diagrammatic Construction Theory for Charged Excitations in Solids.
Samragni BanerjeeAlexander Yu SokolovPublished in: Journal of chemical theory and computation (2022)
We present the first implementation and applications of non-Dyson algebraic diagrammatic construction theory for charged excitations in three-dimensional periodic solids (EA/IP-ADC). The EA/IP-ADC approach has a computational cost similar to the ground-state Møller-Plesset perturbation theory, enabling efficient calculations of a variety of crystalline excited-state properties (e.g., band structure, band gap, density of states) sampled in the Brillouin zone. We use EA/IP-ADC to compute the quasiparticle band structures and band gaps of several materials (from large-gap atomic and ionic solids to small-gap semiconductors) and analyze the errors of EA/IP-ADC approximations up to the third order in perturbation theory. Our work also reports the first-ever calculations of ground-state properties (equation-of-state and lattice constants) of three-dimensional crystalline systems using a periodic implementation of third-order Møller-Plesset perturbation theory (MP3).