Login / Signup

Prolonged Exciton Lifetime Is Achieved in Porphyrin Nanoring by Template Engineering: A Nonadiabatic Tight Binding Approach.

Shrabanti MondalMd HabibRitabrata SarkarSougata Pal
Published in: The journal of physical chemistry letters (2024)
Porphyrin nanoring has been attracting immense attention due to its light harvesting capacity and potential applications in optical, catalysis, sensor, and electronic devices. We demonstrate by nonadiabatic quantum dynamics simulations that the photovoltaic efficiency can be enhanced by template engineering. Altering the hexadentate template (T6) with two tridentate templates (2T3) within the porphyrin ring (P6) cavity accelerated the electron transfer twice and suppressed the electron-hole recombination by nearly three times. The atomistic tight-binding simulation rationalized the dynamics by different localizations of charge of the band edge states, changes in nonadiabatic coupling, alteration in quantum coherence, and involvement of diverse electron-phonon vibrational modes. Further 2T3 templates more strongly hold the P6 ring than T6, reducing the structural fluctuation. As a result, the nonadiabatic coupling becomes weaker and suppresses the carrier recombination. Current atomistic simulation presents a template engineering strategy to enhance the exciton lifetime along with ultrafast charge separation, crucial factors for photovoltaic applications.
Keyphrases