A metal-organic framework-integrated composite for piezocatalysis-assisted tumour therapy: design, related mechanisms, and recent advances.
Shuteng WangYifan LiuChunhua QuanShifang LuanHengchong ShiLei WangPublished in: Biomaterials science (2024)
With the growing need for more effective tumour treatment, piezocatalytic therapy has emerged as a promising approach due to its distinctive capacities to generate ROS through stress induction and regulate the hypoxic state of the TME. MOF-based piezocatalysts not only possess the benefits of piezocatalysis but also exhibit several advantages associated with MOFs, such as tunable pore size, large specific surface area, and good biocompatibility. Therefore, they are expected to become a powerful promoter of piezocatalytic therapy. This review elaborates on the fundamental principles of piezocatalysis and summarises recent advances in the piezocatalytic therapy and combination therapies of tumours, generalising the strategies for constructing piezocatalytic systems based on MOFs. Finally, the challenges confronted and future opportunities for the design and application of piezocatalytic MOF anticancer systems have been discussed.