Ultrafast Graphene Light Emitters.
Young Duck KimYuanda GaoRen-Jye ShiueLei WangOzgur Burak AslanMyung-Ho BaeHyungsik KimDongjea SeoHeon-Jin ChoiSuk Hyun KimAndrei NemilentsauTony LowCheng TanDmitri K EfetovTakashi TaniguchiKenji WatanabeKenneth L ShepardTony F HeinzDirk R EnglundJames HonePublished in: Nano letters (2018)
Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.
Keyphrases
- high speed
- room temperature
- energy transfer
- drinking water
- high resolution
- magnetic resonance imaging
- blood pressure
- air pollution
- multidrug resistant
- carbon nanotubes
- radiation therapy
- magnetic resonance
- photodynamic therapy
- computed tomography
- solar cells
- liquid chromatography
- light emitting
- single molecule
- reduced graphene oxide