Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance.
Shuilai QiuXiyun RenXia ZhouTao ZhangLei SongYuan HuPublished in: ACS applied materials & interfaces (2020)
Natural nacre offers an optimized guiding principle for the assembly of lightweight and high-strength nanocomposites with excellent mechanical properties. Inspired by the "brick-and-mortar" layered structure of natural nacre, we present a cohort of bioinspired nanocomposites consisting of nanofibrillar cellulose (NFC) and few-layer hydroxyl functionalized black phosphorus (BP-OH) via a vacuum-assisted filtration self-assembly procedure. Owing to the well dispersed two-dimensional (2D) BP-OH in one-dimensional (1D) NFC and strong interfacial hydrogen bonding between them, these novel nacre-like BP-OHx/NFC composite films show excellent mechanical performance with tensile strength up to 214.0 MPa, 300% increase compared to pure NFC and tensile fracture strain up to 23.8%, 1.8 times higher than that of pure NFC. Moreover, these nacre-like composite films bare good fire resistance and high thermal stability. This nacre-inspired approach demonstrates a promising strategy for designing high-performance BP-OHx/NFC composite film, and the obtained bioinspired material could be a potential candidate in the application of flexible construction materials and flame retarded insulation materials.