The emergence of antibiotic resistance in pathogens is one of the major health concerns facing mankind as different bacterial strains have developed resistance to antibiotics over the period of time due to overuse and misuse of antibiotics. Besides this, ability to form biofilms is another major factor contributing to antibiotic resistance, which has necessitated the need for exploration for novel and effective compounds with ability to inhibit biofilm formation. Endophytic fungi are reported to exhibit antibacterial and anti-biofilm potential and could serve as a potent source of novel antibacterial compounds. Majority of the bioactivities have been reported from fungi belonging to phylum Ascomycota. Endophytic basidiomycetes, inspite of their profound ability to serve as a source of bioactive compounds have not been exploited extensively. In present study, an attempt was made to assess the antibacterial, anti-biofilm and biofilm dispersion potential of an endophytic basidiomycetous fungus Schizophyllum commune procured from the culture collection of our lab. Ethyl acetate extract of S. commune showed good antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Vibrio cholerae. Minimum inhibitory concentration and minimum bactericidal concentration of the extract were in the range of 1.25-10 mg/ml against the tested bacterial pathogens. The mode of action was determined to be bactericidal which was further confirmed by time kill studies. Good anti-biofilm activity of S. commune extract was recorded against K. pneumoniae and S. enterica, which was further validated by fluorescence microscopy. The present study highlights the importance of endophytic basidiomycetes as source of therapeutic compounds.
Keyphrases
- biofilm formation
- pseudomonas aeruginosa
- staphylococcus aureus
- escherichia coli
- candida albicans
- anti inflammatory
- klebsiella pneumoniae
- cystic fibrosis
- multidrug resistant
- silver nanoparticles
- oxidative stress
- acinetobacter baumannii
- public health
- gram negative
- healthcare
- single molecule
- methicillin resistant staphylococcus aureus
- human health
- antimicrobial resistance
- chronic pain
- drug resistant
- essential oil
- high throughput
- high resolution
- risk assessment
- single cell
- mass spectrometry
- optical coherence tomography