Determination of the optimal location of samples on quartz tuning fork-based biosensors: a computational study.
Amir Hossein AtabakiAbbas MontazeriHashem Rafii-TabarPezhman SasanpourPublished in: Biomedical physics & engineering express (2021)
In view of efficiency, simple operation, and affordable cost and disposability, quartz tuning fork systems form good candidates for mechanical-based biosensors in point of care applications. Based on the geometrical structure, the frequency response of the tuning fork- based sensors is dependent on the location of absorbed samples. In order to have the maximum efficiency and sensitivity, the optimized condition of sample loading on the fork structures should be considered. In this regard, here, we have determined the optimized sample location to be on the prongs of the quartz tuning fork by calculating the frequency response of the quartz tuning fork using the finite element method. From an application point of view, we have obtained an agreement between the calculational method and the experimental excitation technique of the structure. The results from our study show that by using an appropriate location for the sample, the quartz tuning fork could be exploited with high sensitivity.